Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addit Manuf ; 842024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567361

RESUMO

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

2.
Addit Manuf ; 732023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37719134

RESUMO

Plastic scintillators, a class of solid-state materials used for radiation detection, were additively manufactured with vat photopolymerization. The photopolymer resins consisted of a primary dopant and a secondary dopant dissolved in a bisphenol A ethoxylate diacrylate-based matrix. The absorptive dopants significantly influence important print parameters, for example, secondary dopants decrease the light penetration depth by a factor > 12 ×. The primary dopant 2,5-diphenyloxazole had minimal impact on the printing process even when loaded at 25 % by mass of the resin. Working curve measurements, which relate energy dose to cure depth, were performed as a function of feature size to further assess the influence of dopants. Photopatterns smaller than 150 µm width had apparent increases in critical energy dose compared to larger photopatterns, while all resins maintained printed features in line gratings with 50 µm of separation. Printed scintillator monoliths were compared to scintillators cast by traditional molding, demonstrating that the layer-by-layer printing process does not decrease scintillation response. A maximum light output of 31 % of a benchmark plastic scintillator (EJ-200) and successful pulse shape discrimination were achieved with 20 % by mass 2,5-diphenyloxazole as the primary dopant and 0.1 % by mass 9,9-dimethyl-2,7-distyrylfluorene as the secondary dopant in printed scintillator samples.

3.
Small ; 19(50): e2301987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409414

RESUMO

Data-driven U-net machine learning (ML) models, including the pix2pix conditional generative adversarial network (cGAN), are shown to predict 3D printed voxel geometry in digital light processing (DLP) additive manufacturing. A confocal microscopy-based workflow allows for the high-throughput acquisition of data on thousands of voxel interactions arising from randomly gray-scaled digital photomasks. Validation between prints and predictions shows accurate predictions with sub-pixel scale resolution. The trained cGAN performs virtual DLP experiments such as feature size-dependent cure depth, anti-aliasing, and sub-pixel geometry control. The pix2pix model is also applicable to larger masks than it is trained on. To this end, the model can qualitatively inform layer-scale and voxel-scale print failures in real 3D-printed parts. Overall, machine learning models and the data-driven methodology, exemplified by U-nets and cGANs, show considerable promise for predicting and correcting photomasks to achieve increased precision in DLP additive manufacturing.

4.
ACS Appl Mater Interfaces ; 15(12): 16046-16054, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926807

RESUMO

Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.

5.
Addit Manuf ; 622023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733692

RESUMO

Vat photopolymerization (VP) is a rapidly growing category of additive manufacturing. As VP methods mature the expectation is that the quality of printed parts will be highly reproducible. At present, detailed characterization of the light engines used in liquid crystal display (LCD)-based VP systems is lacking and so it is unclear if they are built to sufficiently tight tolerances to meet the current and/or future needs of additive manufacturing. Herein, we map the irradiance, spectral characteristics, and optical divergence of a nominally 405 nm LCD-based VP light engine. We find that there is notable variation in all of these properties as a function of position on the light engine that cause changes in extent of polymerization and surface texture. We further demonstrate through a derived photon absorption figure of merit and through printed test parts that the spatial heterogeneity observed in the light engine is significant enough to affect part fidelity. These findings help to explain several possible causes of variable part quality and also highlight the need for improved optical performance on LCD-based VP printers.

6.
NPJ Regen Med ; 7(1): 60, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261516

RESUMO

Growth plate injuries affecting the pediatric population may cause unwanted bony repair tissue that leads to abnormal bone elongation. Clinical treatment involves bony bar resection and implantation of an interpositional material, but success is limited and the bony bar often reforms. No treatment attempts to regenerate the growth plate cartilage. Herein we develop a 3D printed growth plate mimetic composite as a potential regenerative medicine approach with the goal of preventing limb length discrepancies and inducing cartilage regeneration. A poly(ethylene glycol)-based resin was used with digital light processing to 3D print a mechanical support structure infilled with a soft cartilage-mimetic hydrogel containing chondrogenic cues. Our biomimetic composite has similar mechanical properties to native rabbit growth plate and induced chondrogenic differentiation of rabbit mesenchymal stromal cells in vitro. We evaluated its efficacy as a regenerative interpositional material applied after bony bar resection in a rabbit model of growth plate injury. Radiographic imaging was used to monitor limb length and tibial plateau angle, microcomputed tomography assessed bone morphology, and histology characterized the repair tissue that formed. Our 3D printed growth plate mimetic composite resulted in improved tibial lengthening compared to an untreated control, cartilage-mimetic hydrogel only condition, and a fat graft. However, in vivo the 3D printed growth plate mimetic composite did not show cartilage regeneration within the construct histologically. Nevertheless, this study demonstrates the feasibility of a 3D printed biomimetic composite to improve limb lengthening, a key functional outcome, supporting its further investigation as a treatment for growth plate injuries.

7.
Nanoscale Adv ; 4(8): 2036-2045, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133417

RESUMO

The presence of electrostatic forces and associated artifacts complicates the interpretation of piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). Eliminating these artifacts provides an opportunity for precisely mapping domain wall structures and dynamics, accurately quantifying local piezoelectric coupling coefficients, and reliably investigating hysteretic processes at the single nanometer scale to determine properties and mechanisms which underly important applications including computing, batteries and biology. Here we exploit the existence of an electrostatic blind spot (ESBS) along the length of the cantilever, due to the distributed nature of the electrostatic force, which can be universally used to separate unwanted long range electrostatic contributions from short range electromechanical responses of interest. The results of ESBS-PFM are compared to state-of-the-art interferometric displacement sensing PFM, showing excellent agreement above their respective noise floors. Ultimately, ESBS-PFM allows for absolute quantification of piezoelectric coupling coefficients independent of probe, lab or experimental conditions. As such, we expect the widespread adoption of EBSB-PFM to be a paradigm shift in the quantification of nanoscale electromechanics.

8.
Small Sci ; 1(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34458889

RESUMO

3D printing is transforming traditional processing methods for applications ranging from tissue engineering to optics. To fulfill its maximum potential, 3D printing requires a robust technique for producing structures with precise three-dimensional (x, y and z) control of mechanical properties. Previous efforts to realize such spatial control of modulus within 3D printed parts have largely focused on low-resolution (mm to cm scale) multi-material processes and grayscale approaches that spatially vary the modulus in the x-y plane and energy dose-based (E = I 0 t exp) models that do not account for the resin's sub-linear response to irradiation intensity. Here, we demonstrate a novel approach for through-thickness (z) voxelated control of mechanical properties within a single-material, monolithic part. Control over the local modulus is enabled by a predictive model that incorporates the observed non-reciprocal dose response of the material. The model is validated by an application of atomic force microscopy to map the through-thickness modulus on multi-layered 3D parts. Overall, both smooth gradations (30 MPa change over ≈75 µm) and sharp step-changes (30 MPa change over ≈5 µm) in modulus are realized in poly(ethylene glycol) diacrylate based 3D constructs, paving the way for advancements in tissue engineering, stimuli-responsive 4D printing and graded metamaterials.

9.
Addit Manuf ; 382021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34268068

RESUMO

Stereolithography (SLA) and digital light processing (DLP) are powerful additive manufacturing techniques that address a wide range of applications including regenerative medicine, prototyping, and manufacturing. Unfortunately, these printing processes introduce micrometer-scale anisotropic inhomogeneities due to the resin absorptivity, diffusivity, reaction kinetics, and swelling during the requisite photoexposure. Previously, it has not been possible to characterize high-resolution mechanical heterogeneity as it develops during the printing process. By combining DLP 3D printing with atomic force microscopy in a hybrid instrument, heterogeneity of a single, in situ printed voxel is characterized. Here, we describe the instrument and demonstrate three modalities for characterizing voxels during and after printing. Sensing Modality I maps the mechanical properties of just-printed, resin-immersed voxels, providing the framework to study the relationships between voxel sizes, print exposure parameters, and voxel-voxel interactions. Modality II captures the nanometric, in situ working curve and is the first demonstration of in situ cure depth measurement. Modality III dynamically senses local rheological changes in the resin by monitoring the viscoelastic damping coefficient of the resin during patterning. Overall, this instrument equips researchers with a tool to develop rich insight into resin development, process optimization, and fundamental printing limits.

10.
Soft Matter ; 17(3): 467-474, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346289

RESUMO

Reversibly programmable liquid crystal elastomer microparticles (LCEMPs), formed as a covalent adaptable network (CAN), with an average diameter of 7 µm ± 2 µm, were synthesized via a thiol-Michael dispersion polymerization. The particles were programmed to a prolate shape via a photoinitiated addition-fragmentation chain-transfer (AFT) exchange reaction by activating the AFT after undergoing compression. Due to the thermotropic nature of the AFT-LCEMPs, shape switching was driven by heating the particles above their nematic-isotropic phase transition temperature (TNI). The programmed particles subsequently displayed cyclable two-way shape switching from prolate to spherical when at low or high temperatures, respectively. Furthermore, the shape programming is reversible, and a second programming step was done to erase the prolate shape by initiating AFT at high temperature while the particles were in their spherical shape. Upon cooling, the particles remained spherical until additional programming steps were taken. Particles were also programmed to maintain a permanent oblate shape. Additionally, the particle surface was programmed with a diffraction grating, demonstrating programmable complex surface topography via AFT activation.

11.
ACS Appl Mater Interfaces ; 12(51): 57450-57460, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306352

RESUMO

Soft elastomers are critical to a broad range of existing and emerging technologies. One major limitation of soft elastomers is the large friction of coefficient (COF) due to inherently large adhesion and internal loss. In applications where lubrication is not applicable, such as soft robotics, wearable electronics, and biomedical devices, elastomers with inherently low dry COF are required. Inspired by the low COF of snakeskins atop soft bodies, this study reports the development of elastomers with low dry COF by growing a hybrid skin layer with a strong interface with a large stiffness gradient. Using a solid-liquid interfacial polymerization (SLIP) process, hybrid skin layers are imparted onto elastomers, which reduces the COF of the elastomers from 1.6 to 0.1, without sacrificing the bulk compliance and ductility of elastomer. Compared with existing surface modification methods, the SLIP process offers spatial control and ability to modify flat, prepatterned, curved, and inner surfaces, which is essential to engineer multifunctional skin layers for emerging applications.

12.
J Am Heart Assoc ; 9(19): e017025, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32924724

RESUMO

Background Cardiac fibroblasts (CFs) have the ability to sense stiffness changes and respond to biochemical cues to modulate their states as either quiescent or activated myofibroblasts. Given the potential for secretion of bioactive molecules to modulate the cardiac microenvironment, we sought to determine how the CF secretome changes with matrix stiffness and biochemical cues and how this affects cardiac myocytes via paracrine signaling. Methods and Results Myofibroblast activation was modulated in vitro by combining stiffness cues with TGFß1 (transforming growth factor ß 1) treatment using engineered poly (ethylene glycol) hydrogels, and in vivo with isoproterenol treatment. Stiffness, TGFß1, and isoproterenol treatment increased AKT (protein kinase B) phosphorylation, indicating that this pathway may be central to myofibroblast activation regardless of the treatment. Although activation of AKT was shared, different activating cues had distinct effects on downstream cytokine secretion, indicating that not all activated myofibroblasts share the same secretome. To test the effect of cytokines present in the CF secretome on paracrine signaling, neonatal rat ventricular cardiomyocytes were treated with CF conditioned media. Conditioned media from myofibroblasts cultured on stiff substrates and activated by TGFß1 caused hypertrophy, and one of the cytokines in that media was insulin growth factor 1, which is a known mediator of cardiac myocyte hypertrophy. Conclusions Culturing CFs on stiff substrates, treating with TGFß1, and in vivo treatment with isoproterenol all caused myofibroblast activation. Each cue had distinct effects on the secretome or genes encoding the secretome, but only the secretome of activated myofibroblasts on stiff substrates treated with TGFß1 caused myocyte hypertrophy, most likely through insulin growth factor 1.


Assuntos
Cardiomegalia/metabolismo , Fibrose/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Comunicação Parácrina/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Mecanotransdução Celular , Ratos , Transdução de Sinais
13.
Soft Matter ; 16(17): 4131-4141, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202291

RESUMO

Understanding the three-dimensional (3D) mechanical and chemical properties of distinctly different, adjacent biological tissues is crucial to mimicking their complex properties with materials. 3D printing is a technique often employed to spatially control the distribution of the biomaterials, such as hydrogels, of interest, but it is difficult to print both mechanically robust (high modulus and toughness) and biocompatible (low modulus) hydrogels in a single structure. Moreover, due to the fast diffusion of mobile species during printing and nonequilibrium swelling conditions of low-solids-content hydrogels, it is challenging to form the high-fidelity structures required to mimic tissues. Here a predictive transport and swelling model is presented to model these effects and then is used to compensate for these effects during printing. This model is validated experimentally by photopatterning spatially distinct hydrogel elastic moduli using a single photo-tunable poly(ethylene glycol) (PEG) pre-polymer solution by sequentially patterning and in-diffusing fresh pre-polymer for further polymerization.

14.
Ultramicroscopy ; 212: 112972, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151796

RESUMO

This contribution demonstrates experimentally how a series of annular dark-field transmission images collected in a scanning electron microscope (SEM) with a basic solid-state detector can be used to quantify electron scattering distributions (i.e., diffraction patterns). The technique is demonstrated at different primary electron energies with a polycrystalline aluminum sample and two amorphous samples comprising vastly different mass-thicknesses. Contrast reversal is demonstrated in both amorphous samples, suggesting that intuitive image contrast interpretation is not always straightforward even for ultrathin, low atomic number samples. We briefly address how the scattering distributions obtained here can be used as an aid to interpret contrast in annular dark-field images, and how to set up imaging conditions to obtain intuitively interpretable contrast from samples with regions of significantly different thickness.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31579363

RESUMO

Controlled growth of crosslinked polyamide (PA) thin films is demonstrated at the interface of a monomer-soaked hydrogel and an organic solution of the complementary monomer. Termed gel-liquid interfacial polymerization (GLIP), the resulting PA films are measured to be chemically and mechanically analogous to the active layer in thin film composite membranes. PA thin films are prepared using the GLIP process on both a morphologically homogeneous hydrogel prepared from poly(2-hydroxyethylmethacrylate) (PHEMA) and a phase-separated, heterogeneous hydrogel prepared from poly(acrylamide) (PAAm). Two monomer systems are examined: trimesoyl chloride (TMC) reacting with m-phenylene diamine (MPD) and TMC reacting with piperazine (PIP). Unlike the self-limiting growth behavior in TFC membrane fabrication, diffusion-limited, continuous growth of the PA films is observed, where both the thickness and roughness of the PA layers increase with reaction time. A key morphological difference is found between the two monomer systems using the GLIP process: TMC/MPD produces a ridge-and-valley surface morphology whereas TMC/PIP produces nodule/granular structures. The GLIP process represents a unique opportunity to not only explore the pore characteristics (size, spacing, and continuity) on the resulting structure and morphology of interfacially polymerized thin films, but also a method to modify the surface of (or encapsulate) hydrogels.

16.
Small Methods ; 3(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31289746

RESUMO

Photopolymerizable materials are the focus of extensive research across a variety of fields ranging from additive manufacturing to regenerative medicine. However, poorly understood material mechanical and rheological properties during polymerization at the relevant exposure powers and single-voxel length-scales limit advancements in part performance and throughput. Here, a novel atomic force microscopy (AFM) technique, sample-coupled-resonance photorheology (SCRPR), to locally characterize the mechano-rheological properties of photopolymerized materials on the relevant reaction kinetic timescales, is demonstrated. By coupling an AFM tip to a photopolymer and exposing the coupled region to a laser, two fundamental photopolymerization phenomena: (1) timescales of photopolymerization at high laser power and (2) reciprocity between photodose and material properties are studied. The ability to capture rapid kinetic changes occurring during polymerization with SCRPR is demonstrated. It is found that reciprocity is only valid for a finite range of exposure powers in the verification material and polymerization is highly localized in a low-diffusion system. After polymerization, in situ imaging of a single polymerized voxel is performed using material-appropriate topographic and nanomechanical modalities of the AFM while still in the as-printed environment.

17.
Proc Natl Acad Sci U S A ; 116(20): 9825-9830, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036649

RESUMO

Technologies surrounding utilization of cellulosic materials have been integral to human society for millennia. In many materials, controlled introduction of defects provides a means to tailor properties, introduce reactivity, and modulate functionality for various applications. The importance of defects in defining the behavior of cellulose is becoming increasingly recognized. However, fully exploiting defects in cellulose to benefit biobased materials and conversion applications will require an improved understanding of the mechanisms of defect induction and corresponding molecular-level consequences. We have identified a fundamental relationship between the macromolecular structure and mechanical behavior of cellulose nanofibrils whereby molecular defects may be induced when the fibrils are subjected to bending stress exceeding a certain threshold. By nanomanipulation, imaging, and molecular modeling, we demonstrate that cellulose nanofibrils tend to form kink defects in response to bending stress, and that these macromolecular features are often accompanied by breakages in the glucan chains. Direct observation of deformed cellulose fibrils following partial enzymatic digestion reveals that processive cellulases exploit these defects as initiation sites for hydrolysis. Collectively, our findings provide a refined understanding of the interplay between the structure, mechanics, and reactivity of cellulose assemblies.


Assuntos
Celulose/química , Nanoestruturas
18.
Sci Adv ; 4(8): eaat4634, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30151428

RESUMO

Liquid crystalline (LC) elastomers (LCEs) enable large-scale reversible shape changes in polymeric materials; however, they require intensive, irreversible programming approaches in order to facilitate controllable actuation. We have implemented photoinduced dynamic covalent chemistry (DCC) that chemically anneals the LCE toward an applied equilibrium only when and where the light-activated DCC is on. By using light as the stimulus that enables programming, the dynamic bond exchange is orthogonal to LC phase behavior, enabling the LCE to be annealed in any LC phase or in the isotropic phase with various manifestations of this capability explored here. In a photopolymerizable LCE network, we report the synthesis, characterization, and exploitation of readily shape-programmable DCC-functional LCEs to create predictable, complex, and fully reversible shape changes, thus enabling the literal square peg to fit into a round hole.

19.
Beilstein J Nanotechnol ; 9: 945-952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600154

RESUMO

This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded contact-resonance frequency is observed with increasing scan speed. Proper characterization and understanding of this phenomenon is necessary to conduct accurate quantitative imaging using contact-resonance AFM, and other contact-mode AFM techniques, at higher scan speeds. A squeeze film hydrodynamic theory is proposed to explain this phenomenon, and model predictions are compared against the experimental data.

20.
J Memb Sci ; 5672018.
Artigo em Inglês | MEDLINE | ID: mdl-30983687

RESUMO

It is commonly believed that the overall permeation resistance of thin film composite (TFC) membranes is dictated by the crosslinked, ultrathin polyamide barrier layer, while the porous support merely serves as the mechanical support. Although this assumption might be the case under low transmembrane pressure, it becomes questionable under high transmembrane pressure. A highly porous support normally yields under a pressure of a few MPa, which can result in a significant level of compressive strain that may significantly increase the resistance to permeation. However, quantifying the influence of porous support deformation on the overall resistance of the TFC membrane is challenging. In particular, it is difficult to determine the deformation/strain of the membrane during active separation. In this study, we use nanoimprint lithography (NIL) to achieve precise compressive deformation in commercial TFC membranes. By adjusting the NIL conditions, membranes were compressed to strain levels up to 60%. SEM and AFM measurements showed that the compression had minimal impact on the barrier-layer surface morphology and total surface area with most of the deformation occurring in the support layer. DI water permeation measurements revealed that the water flux reduction decreases with an increase of strain level. Most significantly, the intrinsic membrane resistance showed negligible changes at strain levels lower than 30%-40%, but increased exponentially at higher strain levels, reaching 250%-500% of pristine (unstrained) membrane values. Using a resistance-in-series model, the strain dependency of the TFC membrane resistance can be described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...